[Coursera] Machine Learning
- Category Other
- Type Tutorials
- Language
- Total size 1.8 GB
- Uploaded By CourseClub
- Downloads 2440
- Last checked 10 hours ago
- Date uploaded 10 hours ago
- Seeders 9
- Leechers 3
Info Hash : EB46B659343D7111E04FF448748E9542BA50C169
Files:
[Coursera] Machine Learning- udp://62.138.0.158:6969/announce
- udp://87.233.192.220:6969/announce
- udp://88.198.231.1:1337/announce
- udp://151.80.120.113:2710/announce
- udp://111.6.78.96:6969/announce
- udp://90.179.64.91:1337/announce
- udp://51.15.4.13:1337/announce
- udp://191.96.249.23:6969/announce
- udp://35.187.36.248:1337/announce
- udp://123.249.16.65:2710/announce
- udp://127.0.0.1:6969/announce
- udp://210.244.71.25:6969/announce
- udp://78.142.19.42:1337/announce
- udp://173.254.219.72:6969/announce
- udp://51.15.76.199:6969/announce
- udp://91.212.150.191:3418/announce
- udp://103.224.212.222:6969/announce
- udp://92.241.171.245:6969/announce
- udp://51.15.40.114:80/announce
- udp://37.19.5.139:6969/announce
Code:
- 001. Welcome to Machine Learning!.mp4 (9.1 MB)
- 001. Welcome to Machine Learning!.srt (2.4 KB)
- 002. Welcome.mp4 (18.3 MB)
- 002. Welcome.srt (9.5 KB)
- 003. What is Machine Learning.mp4 (11.4 MB)
- 003. What is Machine Learning.srt (11.0 KB)
- 004. Supervised Learning.mp4 (16.7 MB)
- 004. Supervised Learning.srt (18.9 KB)
- 005. Unsupervised Learning.mp4 (23.3 MB)
- 005. Unsupervised Learning.srt (27.5 KB)
- 006. Model Representation.mp4 (11.4 MB)
- 006. Model Representation.srt (9.6 KB)
- 007. Cost Function.mp4 (11.5 MB)
- 007. Cost Function.srt (10.2 KB)
- 008. Cost Function - Intuition I.mp4 (15.5 MB)
- 008. Cost Function - Intuition I.srt (11.7 KB)
- 009. Cost Function - Intuition II.mp4 (17.0 MB)
- 009. Cost Function - Intuition II.srt (10.8 KB)
- 010. Gradient Descent.mp4 (18.7 MB)
- 010. Gradient Descent.srt (16.3 KB)
- 011. Gradient Descent Intuition.mp4 (16.6 MB)
- 011. Gradient Descent Intuition.srt (15.9 KB)
- 012. Gradient Descent For Linear Regression.mp4 (16.4 MB)
- 012. Gradient Descent For Linear Regression.srt (13.4 KB)
- 013. Matrices and Vectors.mp4 (11.9 MB)
- 013. Matrices and Vectors.srt (14.9 KB)
- 014. Addition and Scalar Multiplication.mp4 (9.3 MB)
- 014. Addition and Scalar Multiplication.srt (11.3 KB)
- 015. Matrix Vector Multiplication.mp4 (18.9 MB)
- 015. Matrix Vector Multiplication.srt (22.8 KB)
- 016. Matrix Matrix Multiplication.mp4 (16.3 MB)
- 016. Matrix Matrix Multiplication.srt (13.7 KB)
- 017. Matrix Multiplication Properties.mp4 (12.2 MB)
- 017. Matrix Multiplication Properties.srt (11.5 KB)
- 018. Inverse and Transpose.mp4 (17.0 MB)
- 018. Inverse and Transpose.srt (19.9 KB)
- 019. Multiple Features.mp4 (11.6 MB)
- 019. Multiple Features.srt (13.7 KB)
- 020. Gradient Descent for Multiple Variables.mp4 (7.6 MB)
- 020. Gradient Descent for Multiple Variables.srt (6.4 KB)
- 021. Gradient Descent in Practice I - Feature Scaling.mp4 (12.9 MB)
- 021. Gradient Descent in Practice I - Feature Scaling.srt (16.0 KB)
- 022. Gradient Descent in Practice II - Learning Rate.mp4 (12.6 MB)
- 022. Gradient Descent in Practice II - Learning Rate.srt (12.5 KB)
- 023. Features and Polynomial Regression.mp4 (11.5 MB)
- 023. Features and Polynomial Regression.srt (15.0 KB)
- 024. Normal Equation.mp4 (23.6 MB)
- 024. Normal Equation.srt (29.5 KB)
- 025. Normal Equation Noninvertibility.mp4 (8.8 MB)
- 025. Normal Equation Noninvertibility.srt (8.6 KB)
- 026. Working on and Submitting Programming Assignments.mp4 (9.0 MB)
- 026. Working on and Submitting Programming Assignments.srt (4.3 KB)
- 027. Basic Operations.mp4 (24.9 MB)
- 027. Basic Operations.srt (23.9 KB)
- 028. Moving Data Around.mp4 (29.5 MB)
- 028. Moving Data Around.srt (26.9 KB)
- 029. Computing on Data.mp4 (19.8 MB)
- 029. Computing on Data.srt (16.7 KB)
- 030. Plotting Data.mp4 (20.1 MB)
- 030. Plotting Data.srt (16.3 KB)
- 031. Control Statements for, while, if statement.mp4 (23.9 MB)
- 031. Control Statements for, while, if statement.srt (22.0 KB)
- 032. Vectorization.mp4 (22.3 MB)
- 032. Vectorization.srt (17.3 KB)
- 033. Classification.mp4 (11.3 MB)
- 033. Classification.srt (11.4 KB)
- 034. Hypothesis Representation.mp4 (11.2 MB)
- 034. Hypothesis Representation.srt (9.6 KB)
- 035. Decision Boundary.mp4 (22.2 MB)
- 035. Decision Boundary.srt (17.9 KB)
- 036. Cost Function.mp4 (15.8 MB)
- 036. Cost Function.srt (13.4 KB)
- 037. Simplified Cost Function and Gradient Descent.mp4 (16.3 MB)
- 037. Simplified Cost Function and Gradient Descent.srt (14.0 KB)
- 038. Advanced Optimization.mp4 (26.8 MB)
- 038. Advanced Optimization.srt (26.3 KB)
- 039. Multiclass Classification One-vs-all.mp4 (9.1 MB)
- 039. Multiclass Classification One-vs-all.srt (9.2 KB)
- 040. The Problem of Overfitting.mp4 (14.9 MB)
- 040. The Problem of Overfitting.srt (18.2 KB)
- 041. Cost Function.mp4 (15.5 MB)
- 041. Cost Function.srt (18.6 KB)
- 042. Regularized Linear Regression.mp4 (15.6 MB)
- 042. Regularized Linear Regression.srt (14.2 KB)
- 043. Regularized Logistic Regression.mp4 (16.8 MB)
- 043. Regularized Logistic Regression.srt (16.2 KB)
- 044. Non-linear Hypotheses.mp4 (14.7 MB)
- 044. Non-linear Hypotheses.srt (18.0 KB)
- 045. Neurons and the Brain.mp4 (14.6 MB)
- 045. Neurons and the Brain.srt (15.5 KB)
- 046. Model Representation I.mp4 (18.0 MB)
- 046. Model Representation I.srt (14.4 KB)
- 047. Model Representation II.mp4 (18.4 MB)
- 047. Model Representation II.srt (21.1 KB)
- 048. Examples and Intuitions I.mp4 (10.1 MB)
- 048. Examples and Intuitions I.srt (8.5 KB)
- 049. Examples and Intuitions II.mp4 (20.9 MB)
- 049. Examples and Intuitions II.srt (11.4 KB)
- 050. Multiclass Classification.mp4 (7.0 MB)
- 050. Multiclass Classification.srt (7.0 KB)
- 051. Cost Function.mp4 (10.2 MB)
- 051. Cost Function.srt (8.9 KB)
- 052. Backpropagation Algorithm.mp4 (19.1 MB)
- 052. Backpropagation Algorithm.srt (21.5 KB)
- 053. Backpropagation Intuition.mp4 (22.2 MB)
- 053. Backpropagation Intuition.srt (17.7 KB)
- 054. Implementation Note Unrolling Parameters.mp4 (12.9 MB)
- 054. Implementation Note Unrolling Parameters.srt (14.0 KB)
- 055. Gradient Checking.mp4 (18.4 MB)
- 055. Gradient Checking.srt (17.0 KB)
- 056. Random Initialization.mp4 (9.8 MB)
- 056. Random Initialization.srt (10.3 KB)
- 057. Putting It Together.mp4 (23.5 MB)
- 057. Putting It Together.srt (26.1 KB)
- 058. Autonomous Driving.mp4 (28.3 MB)
- 058. Autonomous Driving.srt (6.9 KB)
- 059. Deciding What to Try Next.mp4 (9.4 MB)
- 059. Deciding What to Try Next.srt (11.7 KB)
- 060. Evaluating a Hypothesis.mp4 (11.0 MB)
- 060. Evaluating a Hypothesis.srt (10.9 KB)
- 061. Model Selection and Train Validation Test Sets.mp4 (19.0 MB)
- 061. Model Selection and Train Validation Test Sets.srt (16.9 KB)
- 062. Diagnosing Bias vs. Variance.mp4 (12.2 MB)
- 062. Diagnosing Bias vs. Variance.srt (11.2 KB)
- 063. Regularization and Bias Variance.mp4 (16.4 MB)
- 063. Regularization and Bias Variance.srt (14.9 KB)
- 064. Learning Curves.mp4 (16.4 MB)
- 064. Learning Curves.srt (23.3 KB)
- 065. Deciding What to Do Next Revisited.mp4 (11.4 MB)
- 065. Deciding What to Do Next Revisited.srt (13.3 KB)
- 066. Prioritizing What to Work On.mp4 (15.1 MB)
- 066. Prioritizing What to Work On.srt (18.5 KB)
- 067. Error Analysis.mp4 (21.3 MB)
- 067. Error Analysis.srt (19.3 KB)
- 068. Error Metrics for Skewed Classes.mp4 (17.9 MB)
- 068. Error Metrics for Skewed Classes.srt (20.8 KB)
- 069. Trading Off Precision and Recall.mp4 (21.3 MB)
- 069. Trading Off Precision and Recall.srt (19.7 KB)
- 070. Data For Machine Learning.mp4 (17.3 MB)
- 070. Data For Machine Learning.srt (21.8 KB)
- 071. Optimization Objective.mp4 (21.9 MB)
- 071. Optimization Objective.srt (19.8 KB)
- 072. Large Margin Intuition.mp4 (15.2 MB)
- 072. Large Margin Intuition.srt (20.1 KB)
- 073. Mathematics Behind Large Margin Classification.mp4 (28.5 MB)
- 073. Mathematics Behind Large Margin Classification.srt (33.8 KB)
- 074. Kernels I.mp4 (22.8 MB)
- 074. Kernels I.srt (27.4 KB)
- 075. Kernels II.mp4 (22.6 MB)
- 075. Kernels II.srt (29.0 KB)
- 076. Using An SVM.mp4 (32.0 MB)
- 076. Using An SVM.srt (41.1 KB)
- 077. Unsupervised Learning Introduction.mp4 (5.2 MB)
- 077. Unsupervised Learning Introduction.srt (5.0 KB)
- 078. K-Means Algorithm.mp4 (17.7 MB)
- 078. K-Means Algorithm.srt (24.7 KB)
- 079. Optimization Objective.mp4 (10.9 MB)
- 079. Optimization Objective.srt (9.3 KB)
- 080. Random Initialization.mp4 (11.1 MB)
- 080. Random Initialization.srt (15.3 KB)
- 081. Choosing the Number of Clusters.mp4 (12.2 MB)
- 081. Choosing the Number of Clusters.srt (16.9 KB)
- 082. Motivation I Data Compression.mp4 (21.5 MB)
- 082. Motivation I Data Compression.srt (19.0 KB)
- 083. Motivation II Visualization.mp4 (8.3 MB)
- 083. Motivation II Visualization.srt (9.6 KB)
- 084. Principal Component Analysis Problem Formulation.mp4 (14.0 MB)
- 084. Principal Component Analysis Problem Formulation.srt (13.0 KB)
- 085. Principal Component Analysis Algorithm.mp4 (24.3 MB)
- 085. Principal Component Analysis Algorithm.srt (26.9 KB)
- 086. Reconstruction from Compressed Representation.mp4 (7.2 MB)
- 086. Reconstruction from Compressed Representation.srt (5.1 KB)
- 087. Choosing the Number of Principal Components.mp4 (15.6 MB)
- 087. Choosing the Number of Principal Components.srt (19.9 KB)
- 088. Advice for Applying PCA.mp4 (19.7 MB)
- 088. Advice for Applying PCA.srt (24.8 KB)
- 089. Problem Motivation.mp4 (10.6 MB)
- 089. Problem Motivation.srt (15.1 KB)
- 090. Gaussian Distribution.mp4 (15.2 MB)
- 090. Gaussian Distribution.srt (14.5 KB)
- 091. Algorithm.mp4 (18.9 MB)
- 091. Algorithm.srt (22.1 KB)
- 092. Developing and Evaluating an Anomaly Detection System.mp4 (20.5 MB)
- 092. Developing and Evaluating an Anomaly Detection System.srt (25.8 KB)
- 093. Anomaly Detection vs. Supervised Learning.mp4 (13.1 MB)
- 093. Anomaly Detection vs. Supervised Learning.srt (11.2 KB)
- 094. Choosing What Features to Use.mp4 (19.1 MB)
- 094. Choosing What Features to Use.srt (23.7 KB)
- 095. Multivariate Gaussian Distribution.mp4 (21.9 MB)
- 095. Multivariate Gaussian Distribution.srt (25.8 KB)
- 096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4 (22.4 MB)
- 096. Anomaly Detection using the Multivariate Gaussian Distribution.srt (24.8 KB)
- 097. Problem Formulation.mp4 (16.4 MB)
- 097. Problem Formulation.srt (15.9 KB)
- 098. Content Based Recommendations.mp4 (23.2 MB)
- 098. Content Based Recommendations.srt (19.5 KB)
- 099. Collaborative Filtering.mp4 (15.5 MB)
- 099. Collaborative Filtering.srt (19.1 KB)
- 100. Collaborative Filtering Algorithm.mp4 (14.7 MB)
- 100. Collaborative Filtering Algorithm.srt (15.6 KB)
- 101. Vectorization Low Rank Matrix Factorization.mp4 (12.8 MB)
- 101. Vectorization Low Rank Matrix Factorization.srt (15.4 KB)
- 102. Implementational Detail Mean Normalization.mp4 (12.9 MB)
- 102. Implementational Detail Mean Normalization.srt (15.6 KB)
- 103. Learning With Large Datasets.mp4 (8.5 MB)
- 103. Learning With Large Datasets.srt (7.6 KB)
- 104. Stochastic Gradient Descent.mp4 (21.0 MB)
- 104. Stochastic Gradient Descent.srt (17.6 KB)
- 105. Mini-Batch Gradient Descent.mp4 (9.8 MB)
- 105. Mini-Batch Gradient Descent.srt (7.5 KB)
- 106. Stochastic Gradient Descent Convergence.mp4 (18.1 MB)
- 106. Stochastic Gradient Descent Convergence.srt (15.7 KB)
- 107. Online Learning.mp4 (20.5 MB)
- 107. Online Learning.srt (26.1 KB)
- 108. Map Reduce and Data Parallelism.mp4 (21.2 MB)
- 108. Map Reduce and Data Parallelism.srt (27.2 KB)
- 109. Problem Description and Pipeline.mp4 (10.4 MB)
- 109. Problem Description and Pipeline.srt (13.9 KB)
- 110. Sliding Windows.mp4 (21.9 MB)
- 110. Sliding Windows.srt (29.7 KB)
- 111. Getting Lots of Data and Artificial Data.mp4 (25.3 MB)
- 111. Getting Lots of Data and Artificial Data.srt (33.2 KB)
- 112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4 (21.9 MB)
- 112. Ceiling Analysis What Part of the Pipeline to Work on Next.srt (21.8 KB)
- 113. Summary and Thank You.mp4 (9.1 MB)
- 113. Summary and Thank You.srt (7.7 KB)
- [CourseClub.NET].url (0.1 KB)
- [FCS Forum].url (0.1 KB)
- [FreeCourseSite.com].url (0.1 KB)