[Coursera] Machine Learning

  • Category Other
  • Type Tutorials
  • Language
  • Total size 1.8 GB
  • Uploaded By CourseClub
  • Downloads 2440
  • Last checked 10 hours ago
  • Date uploaded 10 hours ago
  • Seeders 9
  • Leechers 3


Info Hash : EB46B659343D7111E04FF448748E9542BA50C169


Files:

[Coursera] Machine Learning
  • udp://62.138.0.158:6969/announce
  • udp://87.233.192.220:6969/announce
  • udp://88.198.231.1:1337/announce
  • udp://151.80.120.113:2710/announce
  • udp://111.6.78.96:6969/announce
  • udp://90.179.64.91:1337/announce
  • udp://51.15.4.13:1337/announce
  • udp://191.96.249.23:6969/announce
  • udp://35.187.36.248:1337/announce
  • udp://123.249.16.65:2710/announce
  • udp://127.0.0.1:6969/announce
  • udp://210.244.71.25:6969/announce
  • udp://78.142.19.42:1337/announce
  • udp://173.254.219.72:6969/announce
  • udp://51.15.76.199:6969/announce
  • udp://91.212.150.191:3418/announce
  • udp://103.224.212.222:6969/announce
  • udp://92.241.171.245:6969/announce
  • udp://51.15.40.114:80/announce
  • udp://37.19.5.139:6969/announce

Code:

  • 001. Welcome to Machine Learning!.mp4 (9.1 MB)
  • 001. Welcome to Machine Learning!.srt (2.4 KB)
  • 002. Welcome.mp4 (18.3 MB)
  • 002. Welcome.srt (9.5 KB)
  • 003. What is Machine Learning.mp4 (11.4 MB)
  • 003. What is Machine Learning.srt (11.0 KB)
  • 004. Supervised Learning.mp4 (16.7 MB)
  • 004. Supervised Learning.srt (18.9 KB)
  • 005. Unsupervised Learning.mp4 (23.3 MB)
  • 005. Unsupervised Learning.srt (27.5 KB)
  • 006. Model Representation.mp4 (11.4 MB)
  • 006. Model Representation.srt (9.6 KB)
  • 007. Cost Function.mp4 (11.5 MB)
  • 007. Cost Function.srt (10.2 KB)
  • 008. Cost Function - Intuition I.mp4 (15.5 MB)
  • 008. Cost Function - Intuition I.srt (11.7 KB)
  • 009. Cost Function - Intuition II.mp4 (17.0 MB)
  • 009. Cost Function - Intuition II.srt (10.8 KB)
  • 010. Gradient Descent.mp4 (18.7 MB)
  • 010. Gradient Descent.srt (16.3 KB)
  • 011. Gradient Descent Intuition.mp4 (16.6 MB)
  • 011. Gradient Descent Intuition.srt (15.9 KB)
  • 012. Gradient Descent For Linear Regression.mp4 (16.4 MB)
  • 012. Gradient Descent For Linear Regression.srt (13.4 KB)
  • 013. Matrices and Vectors.mp4 (11.9 MB)
  • 013. Matrices and Vectors.srt (14.9 KB)
  • 014. Addition and Scalar Multiplication.mp4 (9.3 MB)
  • 014. Addition and Scalar Multiplication.srt (11.3 KB)
  • 015. Matrix Vector Multiplication.mp4 (18.9 MB)
  • 015. Matrix Vector Multiplication.srt (22.8 KB)
  • 016. Matrix Matrix Multiplication.mp4 (16.3 MB)
  • 016. Matrix Matrix Multiplication.srt (13.7 KB)
  • 017. Matrix Multiplication Properties.mp4 (12.2 MB)
  • 017. Matrix Multiplication Properties.srt (11.5 KB)
  • 018. Inverse and Transpose.mp4 (17.0 MB)
  • 018. Inverse and Transpose.srt (19.9 KB)
  • 019. Multiple Features.mp4 (11.6 MB)
  • 019. Multiple Features.srt (13.7 KB)
  • 020. Gradient Descent for Multiple Variables.mp4 (7.6 MB)
  • 020. Gradient Descent for Multiple Variables.srt (6.4 KB)
  • 021. Gradient Descent in Practice I - Feature Scaling.mp4 (12.9 MB)
  • 021. Gradient Descent in Practice I - Feature Scaling.srt (16.0 KB)
  • 022. Gradient Descent in Practice II - Learning Rate.mp4 (12.6 MB)
  • 022. Gradient Descent in Practice II - Learning Rate.srt (12.5 KB)
  • 023. Features and Polynomial Regression.mp4 (11.5 MB)
  • 023. Features and Polynomial Regression.srt (15.0 KB)
  • 024. Normal Equation.mp4 (23.6 MB)
  • 024. Normal Equation.srt (29.5 KB)
  • 025. Normal Equation Noninvertibility.mp4 (8.8 MB)
  • 025. Normal Equation Noninvertibility.srt (8.6 KB)
  • 026. Working on and Submitting Programming Assignments.mp4 (9.0 MB)
  • 026. Working on and Submitting Programming Assignments.srt (4.3 KB)
  • 027. Basic Operations.mp4 (24.9 MB)
  • 027. Basic Operations.srt (23.9 KB)
  • 028. Moving Data Around.mp4 (29.5 MB)
  • 028. Moving Data Around.srt (26.9 KB)
  • 029. Computing on Data.mp4 (19.8 MB)
  • 029. Computing on Data.srt (16.7 KB)
  • 030. Plotting Data.mp4 (20.1 MB)
  • 030. Plotting Data.srt (16.3 KB)
  • 031. Control Statements for, while, if statement.mp4 (23.9 MB)
  • 031. Control Statements for, while, if statement.srt (22.0 KB)
  • 032. Vectorization.mp4 (22.3 MB)
  • 032. Vectorization.srt (17.3 KB)
  • 033. Classification.mp4 (11.3 MB)
  • 033. Classification.srt (11.4 KB)
  • 034. Hypothesis Representation.mp4 (11.2 MB)
  • 034. Hypothesis Representation.srt (9.6 KB)
  • 035. Decision Boundary.mp4 (22.2 MB)
  • 035. Decision Boundary.srt (17.9 KB)
  • 036. Cost Function.mp4 (15.8 MB)
  • 036. Cost Function.srt (13.4 KB)
  • 037. Simplified Cost Function and Gradient Descent.mp4 (16.3 MB)
  • 037. Simplified Cost Function and Gradient Descent.srt (14.0 KB)
  • 038. Advanced Optimization.mp4 (26.8 MB)
  • 038. Advanced Optimization.srt (26.3 KB)
  • 039. Multiclass Classification One-vs-all.mp4 (9.1 MB)
  • 039. Multiclass Classification One-vs-all.srt (9.2 KB)
  • 040. The Problem of Overfitting.mp4 (14.9 MB)
  • 040. The Problem of Overfitting.srt (18.2 KB)
  • 041. Cost Function.mp4 (15.5 MB)
  • 041. Cost Function.srt (18.6 KB)
  • 042. Regularized Linear Regression.mp4 (15.6 MB)
  • 042. Regularized Linear Regression.srt (14.2 KB)
  • 043. Regularized Logistic Regression.mp4 (16.8 MB)
  • 043. Regularized Logistic Regression.srt (16.2 KB)
  • 044. Non-linear Hypotheses.mp4 (14.7 MB)
  • 044. Non-linear Hypotheses.srt (18.0 KB)
  • 045. Neurons and the Brain.mp4 (14.6 MB)
  • 045. Neurons and the Brain.srt (15.5 KB)
  • 046. Model Representation I.mp4 (18.0 MB)
  • 046. Model Representation I.srt (14.4 KB)
  • 047. Model Representation II.mp4 (18.4 MB)
  • 047. Model Representation II.srt (21.1 KB)
  • 048. Examples and Intuitions I.mp4 (10.1 MB)
  • 048. Examples and Intuitions I.srt (8.5 KB)
  • 049. Examples and Intuitions II.mp4 (20.9 MB)
  • 049. Examples and Intuitions II.srt (11.4 KB)
  • 050. Multiclass Classification.mp4 (7.0 MB)
  • 050. Multiclass Classification.srt (7.0 KB)
  • 051. Cost Function.mp4 (10.2 MB)
  • 051. Cost Function.srt (8.9 KB)
  • 052. Backpropagation Algorithm.mp4 (19.1 MB)
  • 052. Backpropagation Algorithm.srt (21.5 KB)
  • 053. Backpropagation Intuition.mp4 (22.2 MB)
  • 053. Backpropagation Intuition.srt (17.7 KB)
  • 054. Implementation Note Unrolling Parameters.mp4 (12.9 MB)
  • 054. Implementation Note Unrolling Parameters.srt (14.0 KB)
  • 055. Gradient Checking.mp4 (18.4 MB)
  • 055. Gradient Checking.srt (17.0 KB)
  • 056. Random Initialization.mp4 (9.8 MB)
  • 056. Random Initialization.srt (10.3 KB)
  • 057. Putting It Together.mp4 (23.5 MB)
  • 057. Putting It Together.srt (26.1 KB)
  • 058. Autonomous Driving.mp4 (28.3 MB)
  • 058. Autonomous Driving.srt (6.9 KB)
  • 059. Deciding What to Try Next.mp4 (9.4 MB)
  • 059. Deciding What to Try Next.srt (11.7 KB)
  • 060. Evaluating a Hypothesis.mp4 (11.0 MB)
  • 060. Evaluating a Hypothesis.srt (10.9 KB)
  • 061. Model Selection and Train Validation Test Sets.mp4 (19.0 MB)
  • 061. Model Selection and Train Validation Test Sets.srt (16.9 KB)
  • 062. Diagnosing Bias vs. Variance.mp4 (12.2 MB)
  • 062. Diagnosing Bias vs. Variance.srt (11.2 KB)
  • 063. Regularization and Bias Variance.mp4 (16.4 MB)
  • 063. Regularization and Bias Variance.srt (14.9 KB)
  • 064. Learning Curves.mp4 (16.4 MB)
  • 064. Learning Curves.srt (23.3 KB)
  • 065. Deciding What to Do Next Revisited.mp4 (11.4 MB)
  • 065. Deciding What to Do Next Revisited.srt (13.3 KB)
  • 066. Prioritizing What to Work On.mp4 (15.1 MB)
  • 066. Prioritizing What to Work On.srt (18.5 KB)
  • 067. Error Analysis.mp4 (21.3 MB)
  • 067. Error Analysis.srt (19.3 KB)
  • 068. Error Metrics for Skewed Classes.mp4 (17.9 MB)
  • 068. Error Metrics for Skewed Classes.srt (20.8 KB)
  • 069. Trading Off Precision and Recall.mp4 (21.3 MB)
  • 069. Trading Off Precision and Recall.srt (19.7 KB)
  • 070. Data For Machine Learning.mp4 (17.3 MB)
  • 070. Data For Machine Learning.srt (21.8 KB)
  • 071. Optimization Objective.mp4 (21.9 MB)
  • 071. Optimization Objective.srt (19.8 KB)
  • 072. Large Margin Intuition.mp4 (15.2 MB)
  • 072. Large Margin Intuition.srt (20.1 KB)
  • 073. Mathematics Behind Large Margin Classification.mp4 (28.5 MB)
  • 073. Mathematics Behind Large Margin Classification.srt (33.8 KB)
  • 074. Kernels I.mp4 (22.8 MB)
  • 074. Kernels I.srt (27.4 KB)
  • 075. Kernels II.mp4 (22.6 MB)
  • 075. Kernels II.srt (29.0 KB)
  • 076. Using An SVM.mp4 (32.0 MB)
  • 076. Using An SVM.srt (41.1 KB)
  • 077. Unsupervised Learning Introduction.mp4 (5.2 MB)
  • 077. Unsupervised Learning Introduction.srt (5.0 KB)
  • 078. K-Means Algorithm.mp4 (17.7 MB)
  • 078. K-Means Algorithm.srt (24.7 KB)
  • 079. Optimization Objective.mp4 (10.9 MB)
  • 079. Optimization Objective.srt (9.3 KB)
  • 080. Random Initialization.mp4 (11.1 MB)
  • 080. Random Initialization.srt (15.3 KB)
  • 081. Choosing the Number of Clusters.mp4 (12.2 MB)
  • 081. Choosing the Number of Clusters.srt (16.9 KB)
  • 082. Motivation I Data Compression.mp4 (21.5 MB)
  • 082. Motivation I Data Compression.srt (19.0 KB)
  • 083. Motivation II Visualization.mp4 (8.3 MB)
  • 083. Motivation II Visualization.srt (9.6 KB)
  • 084. Principal Component Analysis Problem Formulation.mp4 (14.0 MB)
  • 084. Principal Component Analysis Problem Formulation.srt (13.0 KB)
  • 085. Principal Component Analysis Algorithm.mp4 (24.3 MB)
  • 085. Principal Component Analysis Algorithm.srt (26.9 KB)
  • 086. Reconstruction from Compressed Representation.mp4 (7.2 MB)
  • 086. Reconstruction from Compressed Representation.srt (5.1 KB)
  • 087. Choosing the Number of Principal Components.mp4 (15.6 MB)
  • 087. Choosing the Number of Principal Components.srt (19.9 KB)
  • 088. Advice for Applying PCA.mp4 (19.7 MB)
  • 088. Advice for Applying PCA.srt (24.8 KB)
  • 089. Problem Motivation.mp4 (10.6 MB)
  • 089. Problem Motivation.srt (15.1 KB)
  • 090. Gaussian Distribution.mp4 (15.2 MB)
  • 090. Gaussian Distribution.srt (14.5 KB)
  • 091. Algorithm.mp4 (18.9 MB)
  • 091. Algorithm.srt (22.1 KB)
  • 092. Developing and Evaluating an Anomaly Detection System.mp4 (20.5 MB)
  • 092. Developing and Evaluating an Anomaly Detection System.srt (25.8 KB)
  • 093. Anomaly Detection vs. Supervised Learning.mp4 (13.1 MB)
  • 093. Anomaly Detection vs. Supervised Learning.srt (11.2 KB)
  • 094. Choosing What Features to Use.mp4 (19.1 MB)
  • 094. Choosing What Features to Use.srt (23.7 KB)
  • 095. Multivariate Gaussian Distribution.mp4 (21.9 MB)
  • 095. Multivariate Gaussian Distribution.srt (25.8 KB)
  • 096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4 (22.4 MB)
  • 096. Anomaly Detection using the Multivariate Gaussian Distribution.srt (24.8 KB)
  • 097. Problem Formulation.mp4 (16.4 MB)
  • 097. Problem Formulation.srt (15.9 KB)
  • 098. Content Based Recommendations.mp4 (23.2 MB)
  • 098. Content Based Recommendations.srt (19.5 KB)
  • 099. Collaborative Filtering.mp4 (15.5 MB)
  • 099. Collaborative Filtering.srt (19.1 KB)
  • 100. Collaborative Filtering Algorithm.mp4 (14.7 MB)
  • 100. Collaborative Filtering Algorithm.srt (15.6 KB)
  • 101. Vectorization Low Rank Matrix Factorization.mp4 (12.8 MB)
  • 101. Vectorization Low Rank Matrix Factorization.srt (15.4 KB)
  • 102. Implementational Detail Mean Normalization.mp4 (12.9 MB)
  • 102. Implementational Detail Mean Normalization.srt (15.6 KB)
  • 103. Learning With Large Datasets.mp4 (8.5 MB)
  • 103. Learning With Large Datasets.srt (7.6 KB)
  • 104. Stochastic Gradient Descent.mp4 (21.0 MB)
  • 104. Stochastic Gradient Descent.srt (17.6 KB)
  • 105. Mini-Batch Gradient Descent.mp4 (9.8 MB)
  • 105. Mini-Batch Gradient Descent.srt (7.5 KB)
  • 106. Stochastic Gradient Descent Convergence.mp4 (18.1 MB)
  • 106. Stochastic Gradient Descent Convergence.srt (15.7 KB)
  • 107. Online Learning.mp4 (20.5 MB)
  • 107. Online Learning.srt (26.1 KB)
  • 108. Map Reduce and Data Parallelism.mp4 (21.2 MB)
  • 108. Map Reduce and Data Parallelism.srt (27.2 KB)
  • 109. Problem Description and Pipeline.mp4 (10.4 MB)
  • 109. Problem Description and Pipeline.srt (13.9 KB)
  • 110. Sliding Windows.mp4 (21.9 MB)
  • 110. Sliding Windows.srt (29.7 KB)
  • 111. Getting Lots of Data and Artificial Data.mp4 (25.3 MB)
  • 111. Getting Lots of Data and Artificial Data.srt (33.2 KB)
  • 112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4 (21.9 MB)
  • 112. Ceiling Analysis What Part of the Pipeline to Work on Next.srt (21.8 KB)
  • 113. Summary and Thank You.mp4 (9.1 MB)
  • 113. Summary and Thank You.srt (7.7 KB)
  • [CourseClub.NET].url (0.1 KB)
  • [FCS Forum].url (0.1 KB)
  • [FreeCourseSite.com].url (0.1 KB)